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EXECUTIVE SUMMARY

INVESTIGATION OF DELTA TC FOR
IMPLEMENTATION IN INDIANA

Introduction

The current Superpave asphalt binder specifications do not

address durability issues and do not adequately address fatigue.

Several approaches have been proposed by different researchers to

address both these issues. Some of the proposed refinements are

quite complex, but one, �Tc (delta Tc), is gaining favor because it

is computationally simple and uses the existing BBR test method

and data. The parameter DTc is defined as the difference in the

temperatures at which the stiffness (S) reaches its critical

temperature, Tc,S, (that is, where it meets the specification

maximum of 300 MPa) and at which the relaxation m-value

reaches its critical temperature, Tc,m (where it meets the minimum

specification limit of 0.300).

This research explored the possible advantages and disadvan-

tages of implementing a DTc limit in Indiana as one means to

control binder-related durability cracking issues. This was

accomplished by performing a detailed literature review, analyzing

data for commonly used binders in the state as well as reclaimed

asphalt pavement (RAP) stockpile data, and conducting labora-

tory testing on a range of asphalt binders with varying RAP and

recycled asphalt shingle (RAS) contents.

Findings

Based on the literature review, testing data and analysis

presented here, the following conclusions can be drawn:

N The literature shows that the �Tc value characterizes the

relaxation properties of asphalt binders and is related to the

propensity of a binder to crack. In addition, �Tc tends to

relate to other, more complex rheological parameters.

However, polymer modified binders may exhibit �Tc values

in excess of the cracking limit, despite the fact that they are

typically less prone to cracking by virtue of being more

elastic.

N The literature also shows fair to good correlations of �Tc to

mixture cracking test results in most cases.

N Addition of recovered RAP binder increased the stiffness of

the blended binders, thereby raising (warming) the pass/fail

temperature (Tc) based on the S 5 300 MPa criterion.

Correspondingly, it also resulted in a decrease in the binder’s

ability to relax thermal stresses, as evidenced by a warming

trend in Tc obtained at m-value 5 0.300, in general.

N Estimation of the S-based critical temperature, (Tc,S), by

extrapolating beyond the test temperature range did not

always agree with the value obtained from testing at an extra

temperature and interpolating, particularly for binders

exposed to extended aging in the pressure aging vessel

(designated 40-hr PAV or 2PAV binders).

N Two recovered RAP binders were used for blending

purposes in this study, one of which (RAP1) had �Tc above

-5 (less negative) and the other (RAP2) was greater than -5

(more negative).

N Addition of 20% and 40% RAP1 binder to PG 64-22 and PG

76-22 resulted in larger changes in Tc,S compared with the

changes due to the addition of RAP2.

N The effects of RAP2 on Tc,m of PG 76-22 were not as clear

cut as that seen with RAP1. Perhaps there may be some

chemical interaction with the polymer modified binder.

N As in the case of recovered RAP binder, addition of

recovered RAS binder also increased the stiffness of the

blended binder and raised the Tc,S. But unlike the recovered

RAP binder, addition of RAS appeared to improve the

blended binder’s thermal relaxation ability. Difficulties in

blending the RAS binder into the base or some sort of

interaction may explain these counterintuitive results.

N As other researchers have indicated, �Tc of highly oxidized

binders can be very difficult, if not impossible, to obtain via

BBR testing.

Implementation

At this time, it is not recommended that INDOT implement

�Tc in its specifications. This recommendation is based in large

part on several remaining issues. One primary consideration is

the caution against using �Tc for polymer modified binders. The

results of testing unmodified binders seem to be more meaningful

but would require identifying or assuming which binders are

unmodified and handling them differently in the lab, which could

be problematic. Another consideration is that the need for 40-h

PAV aging is still being debated.

INDOT could consider �Tc a characterization or research tool

for forensic studies, for certain applications like high recycled

material contents, or other investigations. As research continues

on a national level, future implementation in a purchase speci-

fication or quality acceptance process may become advisable.
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1. INTRODUCTION

When the Superpave Performance Graded (PG)
asphalt binder specifications were implemented in
the 1990’s, a new suite of binder tests was also
implemented to help identify binders that would be
resistant to permanent deformation at high tempera-
tures, fatigue cracking at intermediate temperatures,
and thermal cracking at low temperatures. Fatigue
resistance was to be controlled by dynamic shear
rheometer (DSR) testing of aged binder, while ther-
mal cracking resistance was evaluated using the bending
beam rheometer (BBR).

Over the course of more than 20 years of PG
specification use, the asphalt community has recognized
that the current PG criterion for fatigue cracking is
not very reliable. In addition, problems with asphalt
mixture durability have apparently increased. (It could
be argued that we did not recognize as many durability
problems before Superpave because early-age rutting
failures meant many pavements did not last long enough
to exhibit durability problems.) Researchers across the
country have been seeking improved methods to control
binder-related fatigue and durability issues.

Fatigue distress is caused by the repeated deflec-
tion of the pavement under traffic loads. It typically
manifests itself in the form of longitudinal wheel path
cracking that continues to grow, leading to many inter-
connected cracks, as shown in Figure 1.1. Fatigue
cracks typically form at the bottom of the asphalt
layer and progress up to the surface. The development
of fatigue cracking is largely dependent on factors

Figure 1.1 Advanced fatigue cracking (photo courtesy of G.
Huber).

related to the pavement structure—in simplistic terms,
thicker pavements or pavements constructed on stronger
subgrades deflect less and are less likely to crack. The
brittleness of the binder can affect fatigue performance;
as binders age and become more brittle, they are more
prone to cracking.

Durability is not explicitly addressed by the current
PG specifications. Like fatigue cracking, durability issues
are also exacerbated by binder aging, which is caused
by oxidation of the binder. A viscoelastic binder has the
ability to relax when strained; this can be illustrated by
the way a rubber band can deform when it is held in a
stretched position for a long time. Relaxation allows a
binder to undergo deformation (strain) without cracking.
As binders age, they lose this ability to relax (become
less viscous and more brittle) to different extents,
making them more susceptible to cracking. Dura-
bility cracking typically appears as block cracking
and is non-load associated, being caused by binder
aging; see Figure 1.2. Durability problems can also
be seen as raveling (loss of aggregate at the surface),
again related to embrittlement of the binder. Low
temperature cracking is also non-load associated and
is exhibited by transverse cracking.

Several approaches have been proposed by different
researchers to address both fatigue and durability issues.
Some of the proposed refinements are quite complex,
but one, DTc (delta Tc), is gaining favor because it is
computationally simple and uses the existing BBR test
method and data.

In the conventional BBR test, two parameters are
determined at low temperature; the binder stiffness, S,
and the slope of the stiffness vs. time plot, m, as
illustrated in Figure 1.3. The m-value is related to the
binder’s ability to relax when strained; a higher slope
indicates more ability to relax.

The parameter DTc is defined as the difference in the
temperatures at which the stiffness reaches its critical
temperature, Tc,S, (that is, where it meets the specifica-
tion maximum of 300 MPa) and that at which the
m-value reaches its critical temperature, Tc,m (the mini-
mum specification limit of 0.300). In conventional PG
grading, the higher (less negative) of these two critical
temperatures determines the binder grade. The calcula-
tion of DTc is shown in Equation 1.1.

DTc~Tc,S{Tc,m ðEq: 1:1Þ

As a binder ages, its DTc becomes more negative,
which indicates a loss of relaxation properties and
an increased susceptibility to cracking. Currently, the
most common limits being applied to this parameter
are a warning level at -2.5uC, indicating that the
binder is approaching the point where cracking will
occur, and a limit at -5.0uC, which is where the binder
will presumably crack. Anderson, King, Hanson, and
Blankenship (2011) suggested the warning be at 2.5uC
and limit at 5uC, but they calculated �Tc as Tc,m –
Tc,S—the reverse of what has become the accepted
calculation.)

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/14 1



Figure 1.2 Block cracking.
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Figure 1.3 Stiffness (S) and m-values from BBR test.

While the calculation of DTc is quite simple, it has
been correlated by previous researchers with more
complex and more theoretical approaches (Anderson
et al., 2011; Rowe, 2016; Corrigan & Golalipour, 2016;
Mensching, Rowe, Daniel, & Bennert, 2015; D’Angelo,
2016; Reinke, 2017). The parameter has also been
shown to relate well to various types of mixture cracking
tests, such as the Texas overlay tester, double edged
notch test (DENT), as well as field performance (Rowe,
2016). It has even been correlated with low temperature
cracking test results, such as the thermal stress restrained
specimen test (TSRST) (Mensching et al., 2015). This
suggests that the simple approach has a sound basis and
can be used as a surrogate for more rigorous, rheological
approaches.

1.1 Problem Statement

This research explored the possible advantages and
disadvantages of implementing a DTc limit in Indiana
as one means to control binder-related durability crack-
ing issues.

1.2 Objectives

The objectives of this project are to:

N Examine historical binder acceptance testing data to

determine if typical binders in Indiana meet the proposed

DT

N
c limits.

Obtain or fabricate and test samples of binders/mixtures

containing additives such as RAS, RAP and possibly

recycled engine oil bottoms (REOB) to determine if these

additives have an effect on the DTc values for typical

Indiana binders.

N If possible, obtain binder data or binder/mix samples

from projects that have exhibited cracking or durability

problems to examine the correlation between DTc and

distress.

˚ No such projects were identified by the Study Advisory

Committee (SAC Minutes, 7-6-17), so this objective

was dropped.

N Perform limited laboratory mixture testing on selected

binders to explore the relationship between binder and

mixture performance.



˚ This objective was also dropped by the SAC members,
who felt adequate mix testing had been performed by
others (SAC Minutes, 9-19-18).

1.3 Work Plan

Achieving the modified objectives of this project, as
outlined above, involved completion of the following
tasks.

N Literature review. Use of DTc is rapidly evolving, so the
research team continued to review the literature and
relevant presentations throughout the project.

N Analyze historical binder data. The INDOT Office of
Materials Management (OMM) started conducting the
BBR test on binder acceptance samples at two tempera-
tures, which is needed to determine the critical tempera-
tures, in 2016. (Standard grade verification only requires
testing at the binder low temperature grade plus 10uC.)
Data from 2016–2017 was provided to the research team
by OMM. This data was analyzed to examine any trends
in the data and assess how well currently used binders
in the state meet (or do not meet) the proposed limits
on DTc. In addition, the research team examined data
from a previous study on characterizing RAP stockpiles
around the state (Beeson, Prather, & Huber, 2011).

N Develop experimental design. In consultation with the
Business Owner, Project Advisor and SAC, an experi-
mental design was developed early in the project to
determine the variables of interest. The experimental
design is detailed in Chapter 3. The following tests were
performed:

˚ BBR low temperature grade determination; test at two
to three temperatures to determine Tc,S and Tc,m. This
was performed after rolling thin film oven (RTFO)
and 20 hours of pressure aging vessel (PAV) con-
ditioning of the original binders (for comparison) and
the blended binders; the 100% recycled binder would
be considered fully aged. Some 40-h PAV (2PAV)
testing was also conducted for comparison to the
standard 20-h.

˚ High temperature binder testing was performed to verify
the binder grade.

N Conduct laboratory testing according to the approved
experimental design.

N Data analysis and reporting. The amassed data was
analyzed and this final report prepared. Statistical ana-
lysis of the data was conducted. This task also involved
periodic progress reports and SAC meetings.

2. LITERATURE REVIEW

Anderson et al. (2011) proposed the concept of using
the difference in the temperatures at which the BBR
m-value and stiffness meet the specification limits to
identify binders that would be prone to block cracking
after aging (oxidation). Block cracking has been shown
to be related to durability, which is in turn a function
of binder ductility. The m-value, or slope of the time
versus displacement curve, is an indication of the
relaxation properties of the binder. A binder that can

relax stresses more readily (has a steeper slope) is less
likely to crack. As a binder ages, the temperatures at
which the stiffness and m-value reach the specification
limits both increase (become warmer), but the m-value
increases faster. In other words, the binder becomes
more strongly m-controlled, and its relaxation proper-
ties decrease.

Anderson et al. evaluated three asphalt binders in
the lab using a variety of tests and analysis techniq-
ues after 20, 40, and 80 hours of PAV aging. They
determined that the Glover parameter G9/(g9/G9) and
�Tc correlated best to block cracking. (They expressed
�Tc as Tc,m – Tc,S; more recently, this has been reversed
to Tc,S – Tc,m.) They proposed preliminary cracking
warning and cracking limits by correlation of the �Tc

values to the critical cracking temperatures (CCT)
determined using the BBR to estimate the development
of thermal stresses and assumed direct tension values to
estimate the tensile strength of the binders. That is, the
CCT is the temperature at which the stresses induced in
the binder by thermal contraction exceed the tensile
strength of the binder. The concept was validated based
on a comparison of �Tc values for binders extracted
from four pavements at three airfields to observed field
cracking. It should be noted, however, that none of the
pavements exhibited severe block cracking (Anderson
et al., 2011).

The �Tc parameter has been included in AASHTO
PP 78-17, Design Considerations When Using Reclaimed
Asphalt Shingles (RAS) in Asphalt Mixtures, to assess
embrittlement of the blended binder caused by the
incorporation of heavily oxidized shingle binder. A
value of -5.0uC is suggested in PP 78 as the limit below
which (more negative) significant cracking could
be expected, but it is noted that this limit could
be adjusted. A 40-h PAV aging time is called for in
PP 78.

In addition to being used to evaluate embrittlement
caused by RAS binder, �Tc has also been suggested by
some researchers as a tool to detect the presence of
re-refined engine oil bottoms (REOB) (Arnold, 2017;
Bennert et al., 2015; Li, Gibson, Andriescu, & Arnold,
2017; You et al., 2018). REOB is also called vacuum
tower asphalt extender (VTAE) by refiners (REOB
Task Force, 2016). REOB is the black, sticky residue
left after waste engine oils are distilled, or re-refined,
to produce new lubricating oil. It contains petroleum
products as well as engine oil additives (like heat
stabilizers and others) and metals from engine wear
(Arnold, 2017). REOB is used to extend asphalt and
soften it. Many states have banned the use of REOB
because of concerns about its effects on long-term
pavement performance (Arnold, 2017). Research in
Canada suggested REOB was to blame for significant
cracking after nine years of service (Hesp, Genin, Scafe,
Shurvell, & Subramani, 2009). Because REOB tends to
affect the stiffness more than the m-value (Youtcheff,
2016), it yields a greater difference in �Tc, therefore
�Tc has been used by some researchers to detect the
presence of REOB in a binder.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/14 3



A 2016 position paper by the Asphalt Institute
summarizes relevant literature regarding REOB/VTAE.
The paper recommends further evaluation of �Tc after
extended (40-h) PAV aging as a possible test method to
evaluate the effects of REOB on binder durability and
performance. However, it cautioned against using this
as a purchase specification, citing the need for more
research and the impacts of such extended testing time
on testing operations and logistics. (REOB Task Force,
2016) Extended PAV aging has been suggested by many
researchers to better differentiate between binders
(Corrigan & Golalipour, 2016) and to fully character-
ize embrittlement. D’Angelo suggests that 20-h PAV
aging and the change between the original binder and
20-h-aged binder are sufficient to predict if the binder
would fail after 40-h aging (D’Angelo, 2016).

All binders become more m-controlled as they age,
demonstrating the loss of relaxation properties as the
binder oxidizes. The presence of RAP, RAS, REOB,
waxes and paraffinic oils are associated with more
negative values of �Tc (REOB Task Force, 2016;
Cascione, 2018).

Rahbar-Rastegar, Daniel, & Reinke (2017) com-
pared asphalt binder and mixture cracking test results
for 14 plant-produced mixtures in New Hampshire. The
binder tests were conducted on binder extracted from
the mixtures then PAV-aged for 20 hours. They found
that the �Tc value correlated well with the more com-
plex (in terms of analysis techniques) Glover-Rowe
parameter and rheological index, R. Mixture tests—
including dynamic modulus, phase angle, mixture
Glover-Rowe, dynamic cyclic fatigue and disk-
shaped compact tension fracture energy—did not cor-
relate well amongst themselves. The researchers also
did not see good correlations between the binder crack-
ing indices and mixture fatigue or low-temperature
cracking test results.

Reinke (2017) reported on comparisons of �Tc and
other rheological properties to field performance of
some projects in Minnesota. The comparison estab-
lished a good correlation between �Tc and field crack-
ing after six years; the correlation was slightly better for
40-h PAV aging. He also postulated a relationship
between �Tc and mixture fatigue; although �Tc is a low
temperature test and fatigue is an intermediate tempera-
ture distress, both are related to binder relaxation.

Arshadi et al. (2017) used the �Tc parameter, among
other binder and mixture parameters, to evaluate rut-
ting, cracking and durability of four plant-produced
mixtures in Oklahoma that incorporated 12% RAP and
3% RAS with different warm mix technologies plus an
HMA control with the same recycled materials. They
found a fair correlation of �Tc with the critical strain
energy release rate (Jc) from the SCB test. Two mixes
with a WMA chemical additive plus either a two PG
grade drop or a rejuvenator and a one PG grade drop
performed better in terms of �Tc and Jc than the HMA
control, the foamed WMA and the chemical WMA
additive alone.

Karki and Zhou (2018) tested a range of asphalt
binders from Texas in terms of �Tc among other
parameters. They found that the �Tc value (20-h PAV)
for the same grade from the same source from different
days of production could vary markedly. Four samples
of PG 64-22 from one source had values ranging from
-1.6 to -4.6. Values from a second source of PG 64-22
varied even more; -1.7 on one day and -7.8 on another
day. One PG 58-28, sampled once, also exceeded the
-5 limit with a �Tc of -7.2.

When Karki and Zhou (2018) blended the PG 58-28
(�Tc 5 -7.2) and PG 64-22 (�Tc 5 -4.6) with 30%

RAP binder (PG 94-xx) or 30% RAP+RAS binder (PG
106-xx), the �Tc became more negative. The PG 64-22
with 30% RAP had a �Tc slightly more negative than
that of the 64-22 with 30% RAP+RAS binder. The PG
58-28 with 8% RAP binder had a �Tc slightly less
negative than the PG 58-28 without RAP, while the
binder with 11% RAP binder was slightly more negative
than the base asphalt (Karki & Zhou, 2018). These
values seem somewhat counterintuitive and may reflect
the complex nature of binder blending and compatibility.
Reinke (2017) observed that different binders, especially
from different crudes, age differently; he went on to
suggest the same binder could vary depending on the
construction conditions, such as time of year and others.

Karki and Zhou (2018) also looked at the effects of
adding various modifiers to the PG 64-22 and PG 58-28
base asphalts. They found that aromatic extracts, bio-
based rejuvenators and fatty acids improved the �Tc.
REOB, a softener, and PPA, a stiffener, both worsened
the �Tc.

There are indications that �Tc does not work well
for polymer modified binders, especially elastomers
(Anderson, 2019). The elastic nature of polymer modi-
fied binders (PMBs) imparts a lower phase angle at
a given stiffness. (Phase angle is also a measure of
relaxation (Arnold, 2017).) This, in turn, yields a
more negative value of �Tc, suggesting that PMBs
are more prone to cracking, when the opposite is
generally true. Rowe (2016) also suggested the cor-
relation between the Glover-Rowe parameter and
�Tc is not as good when PMB or asphalt rubber
binders are considered as when unmodified binders
are tested. Also, testing binders that are very strongly
m-controlled (very negative �Tc), like RAS binders,
can be problematic (Anderson, 2019).

2.1 Summary

Since its introduction in 2011, the �Tc parameter has
been used rather extensively to characterize the stiffness
and relaxation properties of asphalt binders. Binders
that are m-controlled have limited ability to relax stres-
ses and are therefore more susceptible to cracking.
A negative value of �Tc is associated with these binders;
the more negative, the less the binder can relax without
cracking. A cracking warning limit of -2.5uC and a
cracking limit of -5.0uC have been suggested, though
these values can be adjusted to reflect local conditions.
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The �Tc concept has been applied most frequently
to assess the potential binder embrittlement caused
by modifiers such as RAP, RAS, REOB and other
materials. In fact, �Tc is included in AASHTO’s PP 78
on design of asphalt mixtures with RAS. Some unmodi-
fied binders fail to meet the suggested thresholds;
adding RAP, RAS or REOB to these binders may
exacerbate cracking problems. However, it has been
shown that binders of the same grade from the same
source may vary from day to day.

Several researchers have tried to correlate �Tc with
different mixture cracking tests with varying degrees
of success. Overall, however, the correlations have
been fair to good. Correlations of �Tc with other
binder rheological parameters, such as Glover-Rowe
and rheological index R, have been more uniformly
successful.

Since different binders age differently, extended aging
periods (40 hours) are often recommended. This signi-
ficantly increases the testing time, obviously. There may
also be issues with using �Tc with polymer modified
binders, which may demonstrate a negative �Tc but
actually be more resistant to cracking because of their
elastomeric properties.

3. RESEARCH APPROACH AND FINDINGS

This chapter describes the research approach, includ-
ing the analysis of historical INDOT binder data,
experimental design, factors studied, materials and test
methods. Then the test results and data analysis are
presented.

3.1 Historical Data Analysis

Two sets of historical binder data were provided to
the research team by OMM; data from a previous
analysis of RAP stockpiles around the state and BBR
data from 2016–2017. The BBR data includes enough
temperatures to determine the critical temperatures for
S and m after 20-h PAV aging.

Figure 3.1 summarizes the 2016–2017 BBR data pro-
vided by OMM for 46 binders in use in the state. The
data was collected after 20-h PAV aging. It can be
seen that the sole PG 58-28 and all but one of the PG
64-22 binders passed the -2.5u warning limit. More of
the PG 70-22 and PG 76-22 binders, which are more
likely to be polymer modified, exceeded this limit. In
fact, one PG 70-22 failed the -5.0u limit. Overall, about
39% of the binders tested (18 out of 46) exceeded the
-2.5u limit and 2% (one out of 46) exceeded the -5.0u
limit. This suggests that the consequences of INDOT
implementing a �Tc requirement of #-5.0u would not
be severe, but a limit of -2.5u would likely require
reformulations of many of the binders with higher PG
grades.

Figure 3.2 illustrates the �Tc values determined
on binder extracted from 31 RAP stockpiles around
the state (Beeson et al., 2011). The binder grades are
shown on each bar. Not surprisingly, all of the binders

exceeded the -5.0u cracking limit. Of the 12 RAP
binders graded as PG 82-10, two exceeded a �Tc value
of -10u including one exceeding -16. The range of �Tc

values for the PG 82-10s was from -5.4 to -16.7. Eleven
RAPs were graded PG 88-10; of these four exceeded a
�Tc of -10. One PG 94+2 (continuous grade 94-4) had a
�Tc of -22.9, by far the most negative. The spread of
data for a given low temperature PG grade shows that
the low temperature grade itself does not imply what
the �Tc will be.

3.2 Experimental Design

For this study, initially seven asphalt binders were
evaluated for low and high temperature properties, with
a focus on �Tc after 20 h and 40 h of PAV aging. The
binders selected included both unmodified and mod-
ified materials. Two RAP sources and one RAS were
also selected for blending with a subset of the seven
asphalts. Table 3.1 shows the binders studied and the
blend proportions.

3.3 Data and Analysis

This section summarizes the test data and analysis.
Results of testing the study binders, RAP binders and
blends of RAP and RAS with two of the base asphalts
are presented. Lastly the results of estimating �Tc after
40-h PAV aging based on 20-h testing are summarized.

3.3.1 Testing of Pure Binders

Original and RTFO-aged binders were tested using
the DSR to determine the high temperature grade of
the binders. Two replicates were tested for each binder.
Table 3.2 shows the pass/fail temperatures for each
binder (original and RTFO-aged condition) and the
corresponding high-temperature performance grade.

The low temperature grade was determined on RTFO-
PAV aged binder, subjected to both 20-h and 40-h aging,
also referred to as 1PAV and 2PAV, respectively. The
BBR was used to measure stiffness (S in MPa) and
slope (m-value) of the binder at two or three test
temperatures. As required by the test method, the
average stiffness and average slope from two beams
were used to determine that pass/fail temperatures. For
four out of the seven binders (1PAV-aged), two test
temperatures were sufficient to obtain the pass/fail
temperatures from S 5 300 MPa (Tc,S) and m 5 0.300
(Tc,m) limits by interpolation. For the remaining three
binders (i.e., SBS+PPA, PG 64-22H and PG 64-22V), a
third test temperature was required to get the failure
temperature at S 5 300 MPa. For 2PAV-aged binders,
additional testing at a third temperature was required
to obtain Tc,m and Tc,S.

Based on the DSR and BBR test data, the perfor-
mance and continuous grades of the binders were
determined and are presented in Table 3.3. These data
confirm the PG of the binders, as specified by the
suppliers.
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Figure 3.1 �Tc values for currently used Indiana binders from 2016–2017.

Figure 3.2 �Tc values for RAP stockpiles.

TABLE 3.1
Asphalts and RAP blends*

Binders 0% RAP 20% RAP 40% RAP 100%

PG 64-22* B1 R1, R2 R1, R2

PG 76-22* B2 R1, R2 R1, R2

PG 58-28 B3 — —

PG 70-22 B4 — — R1, R2

SBS+PPA B5 — —

PG 64-22V B6 — —

PG 64-22H B7 — —

*2%, 4%, 6%, and 8% RAS blends were also tested with PG 64-22

and PG 76-22.
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Measured critical pass/fail temperatures were com-
pared with those obtained by extrapolation and are
shown in Table 3.4. It was observed that in the case of

1PAV-aged binders, the extrapolated values were com-
parable with the measured values. For 2PAV-aged
binders, the differences ranged between -2.3u and 2.0uC.
This suggests that extrapolation is not reliable; testing
must be conducted at enough temperatures to bracket
the specification limits.

The difference between the two critical pass/fail
temperatures obtained from S and m values yields �Tc.
Table 3.5 shows the stiffness and slope data for the
seven binders along with the resulting �Tc values, under
both 1PAV and 2PAV-aging conditions. The tempera-
ture data shown in Table 3.5 reflect the interpolated
BBR test temperature minus 10uC for obtaining the
low temperature grade. For all of the binders tested,
the m-value determined the low temperature grade.
These data are also presented graphically in Figures 3.3
to 3.5. If the currently recommended ‘‘watch’’ and
‘‘critical’’ flag values are to be observed, PG 58-28,



TABLE 3.2
DSR test results on the binders

Binders Original RTFO-Aged High Performance Grade High Continuous Grade

PG 64-22 69.0 69.9 PG 64 69

PG 76-22 80.0 84.8 PG 76 80

PG 58-28 60.8 62.6 PG 58 60

PG 70-22 72.7 77.1 PG 70 72

SBS+PPA 75.4 76.1 PG 70 75

PG 64-22V 72.2 74.9 PG 70 72

PG 64-22H 69.4 72.7 PG 64 69

TABLE 3.3
Performance and continuous grades of the binders

Reported Grade Performance Grade Continuous Grade

PG 64-22 PG 64-22 69-25

PG 76-22 PG 76-22 80-24

PG 58-28 PG 58-28 60-30

PG 70-22 PG 70-22 72-24

SBS+PPA PG 70-22 75-27

PG 64-22V PG 70-22 72-25

PG 64-22H PG 64-22 69-24

TABLE 3.4
Measured and extrapolated Tc,S

Binders

1PAV Tc,SuC c,SuC

Measured Extrapolated Difference Measured Extrapolated Difference

PG 64-22 -27.2 N/A N/A -27.1 -24.8 -2.3

PG 76-22 -27.9 N/A N/A -26.1 -26.5 0.4

PG 58-28 -31.2 N/A N/A -30.8 -32.4 1.6

PG 70-22 -27.0 N/A N/A -26.0 -24.7 -1.3

SBS+PPA -29.7 -29.9 0.2 -28.5 -28.7 0.2

PG 64-22V -29.9 -30.5 0.6 -26.0 -26.8 0.8

PG 64-22H -28.9 -28.9 0.0 -26.2 -28.2 2.0

2PAV T

TABLE 3.5
Stiffness and slope data (interpolated) from BBR testing

Tc based on S 5 300 MPa Tc based on m 5 0.300 �Tc

Binder 20-h PAV 40-h PAV 20-h PAV 40-h PAV 20-h PAV 40-h PAV

PG 64-22 -27.2 -27.1 -25.2 -20.8 -1.9 -6.3

PG 76-22 -27.9 -26.1 -24.1 -21.4 -3.8 -4.6

PG 58-28 -31.2 -30.8 -30.5 -26.7 -0.7 -4.0

PG 70-22 -27.0 -26.0 -24.6 -20.9 -2.4 -5.1

SBS+PPA -29.7 -28.5 -27.2 -23.0 -2.4 -5.5

PG 64-22V -29.9 -26.0 -25.5 -21.7 -4.4 -4.3

PG 64-22H -28.9 -26.2 -24.3 -19.7 -4.6 -6.5
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PG 76-22 and PG 64-22V would fall in the watch
category with 2PAV �Tc between -2.5 and -5.0. The
remaining four binders, PG 64-22, PG 70-22, SBS+
PPA and PG 64-22H would all be in the critical
category.

Examination of the data presented in Table 3.5
indicates that as the aging time is increased (doubled,
in this study), the stiffness of the binder increases;

accordingly, an increase (less negative) in the critical
temperature was observed in all binders. The least
change (negligible) was observed in PG 58-28 and PG
64-22, whereas the highly modified PG 64-22V showed
the highest increase in stiffness (i.e., less negative Tc).
The change in Tc,S was in range of 0.1uC (PG 64-22) to
3.9uC (PG 64-22V). These changes are summarized in
Table 3.6.



Figure 3.3 Critical temperature from stiffness criterion (Tc,S).

Figure 3.4 Critical temperature from slope criterion (Tc,m).

Figure 3.5 �Tc values for 20-h and 40-h PAV-aged binders.
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Similarly, the extra aging also causes the binders to
lose their ability to relax stresses as easily as unaged
binders or binders aged for the standard 20-h duration.
This is reflected by the change in the slope parameter

(m-value) obtained from BBR testing. The change
in Tc,m was more pronounced than the change in Tc,S.
All binders showed an increase (less negative) in the
critical temperature Tc,m. Ironically, PG 64-22, which



TABLE 3.6
Change in Tc with aging time (40 h–20 h)

Reported Grade Difference in Tc,S Difference in Tc,m Difference in �Tc

PG 64-22

PG 76-22

PG 58-28

PG 70-22

SBS+PPA

PG 64-22V

PG 64-22H

0.1

1.8

0.4

1.0

1.1

3.9

2.7

4.4

2.7

3.8

3.7

4.2

3.8

4.6

-4.4

-0.8

-3.3

-2.7

-3.1

+0.1

-1.8

Figure 3.6 Change in critical temperature with RAP1 content in PG 64-22.
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showed almost no change in stiffness with increased
aging, had the highest loss in flexibility (Tc,m change of
-4.4uC). The smallest change (-2.7uC) was observed in
PG 76-22.

Combining the two Tc parameters, the resultant change
in �Tc observed by increasing the aging duration,
presented in Figure 3.5, shows mixed results. PG 64-22
showed the largest change at -4.4uC, while PG 64-22V
showed the smallest (or no) change, 0.1uC, followed by
PG 76-22 at -0.8uC.

3.3.2 Testing of Pure RAP

Two RAP samples were used for blending purposes
in this study. Both were supplied by Milestone Con-
tractors; one from 96th St. (RAP1), Indianapolis and
the other from Harding St. (RAP2), Indianapolis. RAP
binders were extracted and recovered from these two
sources using the AASHTO T 319 method. The solvent
used in this procedure was n-propyl bromide (inhib-
ited). Recovered RAP binders were not subjected to
further aging before use in blending.

Following the recovery process, the low and high
temperature grades of these binders were determined.
RAP1 was graded as PG 93-22 and RAP2 was a PG 82-
28. The �Tc values of these two recovered binders after
20-h PAV aging were -4.0u and -5.5u, respectively. Only
20-h aging was performed since the RAPs had been
aged during production and service.

3.3.3 Testing of RAP-Blended Binders

To study the influence of increasing RAP binder
content on the low temperature properties (�Tc) of
the binders, 20% and 40% RAP binders were added
to RTFO-PAV aged binders (20-h PAV). Only two
binders out of the seven were selected for this testing in
consultation with the Study Advisory Committee; PG
64-22 and PG 76-22. The aged binders were not sub-
jected to optional vacuum degassing prior to blending
and/or testing.

Figure 3.6 shows the change in critical temperatures
(stiffness and slope criteria) of the binders with increas-
ing amount of RAP1 in PG 64-22 and the resulting
�Tc. As expected, due to the increase in binder stiffen-
ing with increasing RAP content, a warming trend in Tc

was observed, using both the stiffness and slope criteria.
The data for the base binder (0% RAP) and pure RAP
binder (100%) are also shown for comparison. The �Tc

of the RAP1 binder (-4.0) was over twice that of the
base binder (-1.6). No difference in �Tc was observed
between the addition of 20% and 40% RAP1 binder to
PG 64-22. However, the addition of RAP1 to this
binder appeared to lower the �Tc when compared with
that of the base binder. The percentage change in Tc,S

and Tc,m with the addition of 20% RAP was 8.8% and
3.5%, respectively, when compared with that of the
base binder. The addition of 40% RAP1 changed the
Tc,S and Tc,m by 13.5% and 11.2% respectively. It may



be inferred that the addition of RAP1 binder to this PG
64-22 had a slightly higher influence on the stiffness of
the blended binder than on its m-value, i.e., ability to
shed thermal stress.

Figure 3.7 shows the same data for RAP2 + PG 64-
22 RTFO-PAV aged for 20 hours. In general, the trends
observed with this binder agree with those seen with
RAP1. Increasing the RAP content increased the binder
stiffness and decreased its ability to relax thermal
stresses. The addition of RAP2 to PG 64-22 also had a
higher influence on the m-value than on the stiffness
(shown as % values in the graph). As in the case of
RAP1, increasing RAP2 binder from 20% to 40% did
not appear to change the �Tc significantly (-3.3uC vs.
-2.8uC, respectively); however, unlike RAP1, it did
worsen the �Tc of the blended binders compared to the
base binder. RAP1 binder was stiffer than RAP2 and
had a less negative �Tc than RAP2, although the
difference between the two RAP binders was small, i.e.,
-4.0u vs. -5.5u. Nonetheless, it appears to have a more
pronounced effect on the �Tc of the base binder,
compared with that of RAP1. It should be noted that
the �Tc value for RAP2 (-5.5) exceeded the recom-
mended threshold value of -5.0 used to delineate binders
prone to cracking when used in HMA. In reality, pure

recovered RAP binder would never be used in HMA,
but it is possible that the effect of �Tc of the RAP
binders may also need to be studied.

Figure 3.8 shows the results of blending recovered
RAP1 with PG 76-22. Examination of the Tc,S indicates
that the changes appear to be similar to those seen with
PG 64-22 (cf. Figure 3.6), 8.8, 13.5, and 34.4% vs. 7.0,
13.5, and 36.7%, respectively. However, the m-value
did not change between 20% and 40% RAP (stayed
around 11.5% with respect to the base binder), unlike
the behavior RAP1 + PG 64-22 blend, which had Tc,m
values to 3.5% and 11.2%, respectively.

Figure 3.9 shows the BBR results of blending
recovered RAP2 with PG 76-22. While the increasing
S-based critical temperature (warmer) was following the
expected trend, the m-value based data appeared to be
erratic. Overall, a decrease in �Tc was observed due to
the addition of RAP2 to PG 76-22. No difference in
�Tc was observed between the 20% and 40% RAP.

Overall, comparing Tc from S-based data, Figure 3.6 vs.
Figure 3.8, and Figure 3.7 vs. Figure 3.9, it appears that
addition of RAP2 (with the more negative �Tc) to the
base binders caused small, gradual changes in stiffness
with increasing RAP content, whereas the addition of
RAP1 (with less negative DTc) yielded larger changes.

Figure 3.7 Change in critical temperature with RAP2 content in PG 64-22.

Figure 3.8 Change in critical temperature with RAP1 content in PG 76-22.
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Figure 3.9 Change in critical temperature with RAP2 content in PG 76-22.

Figure 3.10 Effect of RAP1 on stiffness.

Figure 3.11 Effect on RAP2 on stiffness.
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One might expect the more negative RAP to have a
greater effect; these results suggest a more complex
interaction is occurring between the RAP and base
binder. Linear blending does not explain the results.
These trends can be seen more clearly in Figures 3.10
and 3.11.

3.3.4 Testing of RAS-Blended Binders

To study the influence of increasing RAS binder
content on the low temperature properties (�Tc) of the
binders, binder was extracted from one RAS source
(tear-offs) in Indiana. The recovered RAS binder was



too stiff to be poured, even at elevated oven tempera-
tures of 170uC (328uF). Hence, BBR testing of pure
RAS binder could not be performed.

Different percentages of recovered RAS binder were
mixed with the standard 20-h RTFO-PAV aged PG
64-22. It should be noted that it was impossible to
ensure homogeneous blending of the two binders due
to the difference in their stiffnesses. This resulted in a
partially blended binder with clumps of RAS binder.
To avoid negatively impacting the base binder, the
blending temperature was limited to 150uC (302uF). BBR
testing was conducted at two or three test temperatures,
as needed, to obtain the critical pass/fail temperatures
based on stiffness and slope criteria. Results from these
tests are presented in Figure 3.12, while Figure 3.13 is an
alternative representation of the same data grouped by
test parameter.

Addition of RAS binder up to 8% appeared to cause
only a slight increase in the overall stiffness of the blend
when compared with the 2% RAS binder addition.
Also, the amount of RAS added did not appear to
impact the stiffness of the blended binders. (That is, the
stiffness compared to the 2% RAS binder changed only
1.8% to 3.7%.)

Curiously, unlike the trends observed with the
addition of RAP binder, the increase in RAS content
resulted in an increase in the m-value based Tc. This
indicates that the addition of RAS binder improved
the ability of the binder to relax thermal stresses
over that of the base binder. Addition of just 2%

RAS yielded a �Tc greater than -5, but addition of 4%,
6%, and 8% RAS improved the �Tc. This is counter-
intuitive and again suggests a complex interaction is
occurring. In the case of the RAS, these results may also
be influenced by the difficulties in blending the RAS
binder into the base binder in the lab.

3.3.5 DTc Estimation at 2PAV

With the increasing use of various modifiers in
asphalt, the original standard RTFO-PAV aging
introduced with the Strategic Highway Research
Program (SHRP) has proven to be inadequate in
fully capturing the benefits of the modifiers on long-
term aging of pavements. Some researchers have
proposed the need for doubling the PAV-aging time
for binders (aka, 2PAV) to better address this gap
(inadequacy). While this has caused some push back

Figure 3.12 Change in �Tc with increasing RAS binder.

Figure 3.13 Change in low temperature properties with increasing RAS binder.
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Figure 3.14 Crossover temperature from RTFO-aged binders.

Figure 3.15 Crossover temperature from 1PAV-aged binders.
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from the industry due to the extended testing time,
other ways to estimate the �Tc from 1PAV have been
proposed instead.

One method is to determine the crossover temperature
(TvC) of the asphalt, where the phase angle is 45u or the
storage modulus, G9, is equal to the loss modulus, G0.
DSR testing is performed on 8-mm diameter specimens
using RTFO-aged binders and also with 1PAV-aged
binders, at 10 radians/s in the intermediate temperature
range to determine the temperature corresponding to
d 5 45u. These data are shown in Figures 3.14 and 3.15.
Given the two TvC values and the 20-h aging time,
the rate of change is calculated, from which the 40-h
or 2PAV TvC can be estimated, as shown in the equa-
tions below and presented in Table 3.7. D’Angelo

suggested setting the estimated 2PAV TvC limit at
33uC; 40-h aging recommended for binders that have
values .33uC.

Rate of change ROCð Þ~ (1PAV TvC{RTFO TvC)

20

ðEq: 3:1Þ

2PAV TvC~40|ROC z RTFO TvC Eq: 3:2

D’Angelo’s work with Mathy Ergon binder data
showed good linear correlation (R2 5 80.9%) between
2PAV Tvc and 2PAV �Tc. Thus Equation 3.3 can be
used along with Equations 3.1 and 3.2 to estimate
2PAV �Tc.
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TABLE 3.7
Parameters used and obtained from Equations 3.1 and 3.2

Measured Tvc, uC Calculated ROC Calc. Tvc, uC

Binders RTFO 1PAV 1PAV 2PAV

PG 64-22 13.9 33.2 0.96 52.4

PG 76-22 23.5 58.9 1.77 94.3

PG 58-28 7.0 18.9 0.60 30.9

PG 70-22 18.1 27.6 0.47 37.1

SBS+PPA 16.0 24.9 0.44 33.7

PG 64-22V 16.9 26.2 0.46 35.5

PG 64-22H 18.5 24.9 0.32 31.3

TABLE 3.8
Estimated 2PAV �Tc from 2PAV TvC

Binders

Measured �Tc, uC Calculated �Tc, uC

1PAV 2PAV 2PAV (linear) 2PAV (quad.) 2PAV (quad.)

PG 64-22 -1.9 -4.0 -14.2 -13.5 -13.3

PG 76-22 -3.8 -4.6 -34.9 -28.3 -37.0

PG 58-28 -0.7 -4.0 -3.6 -5.2 -4.9

PG 70-22 -2.4 -5.1 -6.7 -7.7 -7.2

SBS+PPA -2.4 -5.5 -5.0 -6.3 -6.0

PG 64-22V -4.4 -4.3 -5.9 -7.0 -6.6

PG 64-22H -4.6 -6.5 -3.8 -5.4 -5.1

ð Þ2PAV Tvc~{2:0282|2PAVDTcz23:545 Eq: 3:3

Using a larger dataset, D’Angelo arrived at two
other quadratic equations shown in Equations 3.4 and
3.5, with R2 of 79.2% and 80.2% respectively. Table 3.8
shows the measured and calculated �Tc values from the
three equations.

2PAV TvC~{0:0088| 2PAVDTcð Þ2{2:4463

|2PAVDTcz17:892
ðEq: 3:4Þ

2PAV TvC~{0:0255| 2PAVDTcð Þ2{3:0477

|2PAVDTcz16:441
ðEq: 3:5Þ

Linear equation estimates were the closest to the
observed values in most cases. For the PG 76-22
and PG 64-22 the estimates were way off the mark
for unknown reasons. The PG 76-22 is likely poly-
mer modified, which may explain the discrepancy,
but the PG 64-22 is almost certainly not polymer
modified.

Going by the -2.5 (watch) and -5.0 (critical)
thresholds, we can expect PG 64-22 and PG 64-22V
to do well, while PG 58-28 and PG 70-22 would
be on the watch list based on the measured data.
The SBS+PPA, PG 64-22H and PG 76-22 would
be marked as poor performers, but as mentioned
earlier, researchers have reported that these limits
cannot be applied reliably to elastomer modified
asphalts.

4. CONCLUSIONS AND RECOMMENDATIONS

Based on the literature review, testing data and
analysis presented here, the following conclusions can
be drawn:

N The literature shows that the �Tc value characterizes the
relaxation properties of asphalt binders and is related
to the propensity of a binder to crack. In addition,
�Tc tends to relate to other, more complex rheological
parameters. However, polymer modified binders may
exhibit �Tc values in excess of the cracking limit despite
the fact that they are typically less prone to cracking by
virtue of being more elastic.

N The literature also shows fair to good correlations of �Tc

to mixture cracking test results in most cases.

N Addition of recovered RAP binder increased the stiffness

of the blended binders, thereby raising (warming) the
pass/fail temperature (Tc) based on the S 5 300 MPa
criterion. Correspondingly, it also resulted in a decrease
in the binder’s ability to relax thermal stresses, as eviden-
ced by a warming trend in Tc obtained at m-value 5

0.300, in general.

N Estimation of the S-based critical temperature, (Tc,S),
by extrapolating beyond the test temperature range did
not always agree with the value obtained from testing at
an extra temperature and interpolating, particularly for
2PAV aged binders.

N Two recovered RAP binders were used for blending
purposes in this study, one of which (RAP1) had �Tc

above -5 (less negative) and the other (RAP2) was lower
than -5 (more negative).

N Addition of 20% and 40% RAP1 binder to PG 64-22 and

PG 76-22 resulted in larger changes in Tc,S compared
with the changes due to the addition of RAP2.



N The effects of RAP2 on Tc,m of PG 76-22 were not as
clear cut as those seen with RAP1. There may be some
chemical interaction with the polymer modified binder,
perhaps.

N As in the case of recovered RAP binder, addition of
recovered RAS binder also increased the stiffness of
the blended binder and raised the Tc,S. But unlike the
recovered RAP binder, addition of RAS appeared to
improve the blended binder’s thermal relaxation abil-
ity. Difficulties in blending the RAS binder into the base
or some sort of interaction may explain these counter-
intuitive results.

N As other researchers have indicated, �Tc of highly
oxidized binders can be very difficult, if not impossible,
to obtain via BBR testing.

N Also, asphalt binders that are modified with elastomers
(PMBs) tend to have very low �Tc values (highly
negative). This does not imply that these binders have
higher cracking potential, since the addition of such
modifiers is used to improve the thermal cracking
resistance.

N Use of the crossover temperature to estimate �Tc after
40-h PAV aging did not yield reliable predictions for the
binders tested here.

4.1 Recommendations

Based on these conclusions, the following recom-
mendations are made by the researchers and supported
by the SAC.

N At this time, it is not recommended that INDOT
implement �Tc in its specifications. This recommenda-
tion is based in large part on several remaining issues.
One primary consideration is the caution against using
�Tc for polymer modified binders. While INDOT can
estimate which binders are likely to be modified based on
the binder grade, suppliers are not obligated to divulge
that information so assumptions may be inaccurate.
The results of testing unmodified binders seem to be
more meaningful but would require identifying or
assuming which binders are unmodified and handling
them differently in the lab, which could be proble-
matic. Another consideration is that the need for 40-h
PAV aging is still being debated. Some researchers
strongly recommend it while others doubt the increased
testing time is truly necessary.

N INDOT could consider �Tc a characterization or research
tool for forensic studies, for certain applications like high
recycled material contents, or other investigations. As
research continues on a national level, future implementa-
tion in a purchase specification or quality acceptance pro-
cess may become advisable.

N In the meantime, INDOT could consider additional
research exploring more sources of RAP and RAS with
a larger spread in �Tc, such as observed in the RAP
stockpile testing.

N If REOB continues to be a concern, �Tc could be used to
explore its effects. Attempts to obtain a binder known to
have REOB for this project were unsuccessful.

N Difficulties in blending the RAS binder into the base
asphalts make the results of that testing questionable.
Other researchers have used �Tc on extracted binders,
though the effects of the extraction may affect the
results. More testing should be done on extracted

binders with different recycled contents and virgin
binder grades.
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